
William Henry Jones
Glenn Research Center, Cleveland, Ohio

Project Integration Architecture: Distributed
Lock Management, Deadlock Detection, and
Set Iteration

NASA/TM—2005-213612

March 2005

The NASA STI Program Office . . . in Profile

Since its founding, NASA has been dedicated to
the advancement of aeronautics and space
science. The NASA Scientific and Technical
Information (STI) Program Office plays a key part
in helping NASA maintain this important role.

The NASA STI Program Office is operated by
Langley Research Center, the Lead Center for
NASA’s scientific and technical information. The
NASA STI Program Office provides access to the
NASA STI Database, the largest collection of
aeronautical and space science STI in the world.
The Program Office is also NASA’s institutional
mechanism for disseminating the results of its
research and development activities. These results
are published by NASA in the NASA STI Report
Series, which includes the following report types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results of
NASA programs and include extensive data
or theoretical analysis. Includes compilations
of significant scientific and technical data and
information deemed to be of continuing
reference value. NASA’s counterpart of peer-
reviewed formal professional papers but
has less stringent limitations on manuscript
length and extent of graphic presentations.

• TECHNICAL MEMORANDUM. Scientific
and technical findings that are preliminary or
of specialized interest, e.g., quick release
reports, working papers, and bibliographies
that contain minimal annotation. Does not
contain extensive analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION. Collected
papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or cosponsored by
NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

• TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to NASA’s
mission.

Specialized services that complement the STI
Program Office’s diverse offerings include
creating custom thesauri, building customized
databases, organizing and publishing research
results . . . even providing videos.

For more information about the NASA STI
Program Office, see the following:

• Access the NASA STI Program Home Page
at http://www.sti.nasa.gov

• E-mail your question via the Internet to
help@sti.nasa.gov

• Fax your question to the NASA Access
Help Desk at 301–621–0134

• Telephone the NASA Access Help Desk at
301–621–0390

• Write to:
 NASA Access Help Desk
 NASA Center for AeroSpace Information
 7121 Standard Drive
 Hanover, MD 21076

William Henry Jones
Glenn Research Center, Cleveland, Ohio

Project Integration Architecture: Distributed
Lock Management, Deadlock Detection, and
Set Iteration

NASA/TM—2005-213612

March 2005

National Aeronautics and
Space Administration

Glenn Research Center

Available from

NASA Center for Aerospace Information
7121 Standard Drive
Hanover, MD 21076

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22100

Available electronically at http://gltrs.grc.nasa.gov

Project Integration Architecture:
Distributed Lock Management, Deadlock Detection,

and Set Iteration

William Henry Jones
National Aeronautics and Space Administration

Glenn Research Center
Cleveland, Ohio 44135

ABSTRACT: The migration of the Project Integration Architecture (PIA) to the distributed object environment of the
Common Object Request Broker Architecture (CORBA) brings with it the nearly unavoidable requirements of multi-
accessor, asynchronous operations. In order to maintain the integrity of data structures in such an environment, it is
necessary to provide a locking mechanism capable of protecting the complex operations typical of the PIA architecture.
This paper reports on the implementation of a locking mechanism to treat that need. Additionally, the ancillary features
necessary to make the distributed lock mechanism work are discussed.

1 Introduction

The Project Integration Architecture (PIA) [1] is an object-
oriented architecture within which practically any appli-
cation may be wrapped. Information in this architecture
is provided not only through the isolated objects which it
presents, but also through the structural relationships of
those objects to one another. For instance, while engi-
neering data is maintained in a configuration object in a
conceptually-flat, balanced, binary tree, the logical orga-
nization of that data into structural units intuitive to the
application user is revealed by an accompanying, n-ary
tree of identification objects. The revelation of informa-
tion through structure brings with it the consequence that
many, if not all, PIA transactional operations involve sets
of objects rather than single objects.

In migrating the Project Integration Architecture to the
Common Object Request Broker Architecutre (CORBA)
environment of distributed objects, the complexities of
multi-accessor operations are brought into the design mix.
While one might wish to serve the objects of a particular
PIA application instance to a single client, nothing in the
basic CORBA specification allows for such a restriction.
Thus, it is appropriate, if perhaps not explicitly necessary,
to provide for the locking of such transactional object sets.

A simple, mutual-exclusion semaphore locking capabil-
ity, as is commonly provided in many software products
and environments, is not appropriate to the task of lock-
ing multiple objects. Such single locks control single enti-
ties. Thus, for a single semaphore to be effective, it would

1

2

3

4

5

Semaphore A

Semaphore B

Figure 1.1: Which Semaphore for Intersecting Sets?

have to be understood as protecting the single set of objects
to manipulated in a transaction; however, since that object
set is dynamically determined at the time the transaction is
proposed, such a single lock can not be pre-established and
recognized by the multiple clients which might interfere in
such a transaction. Further, since another client’s interfer-
ence might involve a distinct object set not identical to the
first set, yet nevertheless intersecting that first locked set,
the efficacy of the single, semaphore-like lock approach is
clearly lacking. This is illustrated in Figure 1.1.

To control dynamically selected sets of objects, it is nec-
essary to provide a matching set of locks, each lock dedi-
cated to a particular object. By having a distinct, identifi-
able lock associated with each indivisible object, compet-
ing transactions may contend with each other for control
of the individual objects necessary to make the transaction
go forward, as is depicted in Figure 1.2. Additionally, it
is desirable for such locks to provide not merely a yes/no

NASA/TM—2005-213612 1

1

2

3

4

5

Client A

Client B

Figure 1.2: Client Transactions Compete for Distributed
Locks

response to an across-the-board usage request, but a graded
set of access levels to the controlled object so that transac-
tions with compatible needs (in particular, read access) may
progress together while assuring that transactions with con-
flicting requirements (in particular, write or delete access)
are excluded.

Another desirable aspect of a lock mechanism is that it be
distributed, even as was implicitly suggested in Figure 1.2.
This is, perhaps, more clearly seen when the statement is
examined from the contrapositive view: a centralized lock
management system is very undesirable. In a centralized
lock system, the rate at which transactions can proceed very
rapidly becomes determined by the rate at which the cen-
tralized lock system can process lock operations. By dis-
tributing lock operations, the operational resources of the
transaction may be brought to bear upon the lock operation,
too. Thus, as transactional resources grow (through multi-
threaded servers and multi-server environments), lock pro-
cessing resouces grow proportionately.

Client A

Client B1

2

Figure 1.3: A Simple Deadlock Condition

With the introduction of multiple-lock environments, the
possibility of deadlock, an irresolvable conflict in the hold-
ing and requesting of locks between two or more clients, is
introduced as well. In its simplest form (depicted in Figure

Client

GLockCtx

Lockable Object

GLock

Figure 2.1: Relationship of Principal Distributed Lock
Components

1.3), a deadlock occurs when client A holds a lock on object
1 and desires a lock on object 2 while client B holds a lock
on object 2 and desires of lock on object 1. As the example
suggests, the detection of deadlocks is relatively straight-
forward; however, it, in turn, brings with it the problem of
iteration upon a dynamically changing set, in this case, the
set of lock holders. Furthering the example, there may be
a client C holding a lock on object 2 with no designs on
object 1. The transaction of client C may run to completion
and release the lock on object 2 while client A is perform-
ing its evaluation of the deadlock condition.

Reviewing all of the above, distributed lock management
brings with it a series of interesting problems. Each are
amenable to solution and, while each solution is no partic-
ular act of genius, the effort as a whole may be instructive
as to the issues that must be confronted in providing mean-
ingful locks in a distributed, structural, object environment.

2 The Solution

The solution of the lock management problem posed above
involves three interfaces in the CORBA environment: a
lock, a lock context, and a positional iterator. As shown
in Figure 2.1, an instance of the lock interface, GLock, is
attached to a lockable interface instance. A lock context
associated with a client is supplied to the lockable instance
to provide a context within which a lock may be held. A
positional iterator instance (not shown in the figure) is cre-
ated internally by the lock context and is initialized and
maintained by the lock in the event that an evaluation of a
potential deadlock condition must be made.

NASA/TM—2005-213612 2

2.1 The Lock and Lock Context

The lock interface, GLock in this implementation, pro-
vides, as would be expected, the basic locking function.
That is, it provides a decision to a requester whether or
not, at the current time, a requested form of access can be
granted.

This decision form of lock management is in opposition to
the alternative blocking form in which a process requesting
a resource lock is suspended until the lock is granted or a
deadlock exception (of whatever form) is thrown. Here, the
GLock service responds to a lock request not by blocking
the requester until the lock can be granted, but by simply
issuing a yes-or-no decision. The decision form was nec-
essary because of the lack of any generic, cross-platform
capacity for suspending an executing thread and queuing it
on some subsequent lock event.

The GLock interface, as it is currently implemented, recog-
nizes six locking levels: Release, Reference, Read, Write,
Execute, and Delete.

1. The holding of a Release lock grants, paradoxically,
a complete disassociation of the requester from the
lockable entity. It is introduced into the lock design
for the clarity of the implementation. By its nature,
a Release lock may be obtained by any requester at
any time. Thus, a new requester may be immediately
granted a Release lock and, as a result, the lock grant-
ing process (and lock releasing process) may be trans-
formed in all cases to a lock conversion process.

2. The holding of a Reference lock grants to the requester
the right to expect the lockable entity to continue to
exist. The locked entity may be read, written, and oth-
erwise change its state as a result of operations carried
out by other clients obtaining appropriate locks, but
it may not cease to exist under the operations appro-
priate to the granting of a Delete lock. Multiple re-
questers may hold this lock simultaneously and this
lock may be held in the presence of other Release,
Read, Write, and Execute locks.

3. The holding of a Read lock grants the right to the re-
quester to obtain, but not change, the state of the lock-
able entity. Multiple requesters may hold this lock si-
multaneously and this lock may be held in the pre-
sense of one or more Reference locks; however, this
lock may not be held in the presence of any Write,
Execute, or Delete lock.

4. The holding of a Write lock grants the right to the re-
quester to obtain, modify, and or set the state of the

lockable entity. At most one requester may hold a
Write lock at a given time and the lock may only be
held in the absense of any and all other Read, Execute,
and Delete locks.

5. The holding of an Execute lock grants the right to the
requester to exercise the functionality of the lockable
entity. At most one requester may hold an Execute
lock at a given time and the lock may only be held
in the absense of any and all other Read, Write, and
Delete locks.

6. The holding of a Delete lock grants the right to the
requester to remove from operation and discard (in
whatever sense) the lockable entity. Subsequent to the
operations permitted by a Delete lock, the expectation
is that the lockable entity will no longer exist in any
meaningful, operational sense. At most one requester
may hold a Delete lock at a given time and the lock
may only be held in the absense of any and all other
Reference, Read, Write, and Execute locks.

Largely because of the Release lock device, the lock re-
quest process can be implemented, in its essense, as a sim-
ple finite state machine based upon the following state vari-
ables: the current lock granted to the requester, the lock
requested by the requester, and the most constraining lock
held on the GLock instance by another context. With the
addition of a few amenities such as the use of a mutual ex-
clusion semaphore to protect the internals of the particular
GLock instance, the unconditional granting of a Release
locks to requesters with no current lock, and the discard-
ing of any granted Release locks at the conclusion of the
lock process, the basic function of the GLock interface is
complete.

A small further adjustment exists in the basic lock pro-
cess. Because of the multiple-reader, single-writer proto-
col specified above, it is possible for multiple, sequential
Read locks to block a Write lock for an indefinite period of
time, even though no fundamental write inhibition exists.
To adjust for this problem, the implemented GLock inter-
face will suspend the granting of Read locks for a short
period of time after the refusing of a Write lock request.
This is done in the expectation that no requester will sim-
ply make one request and give up. Instead, it is expected
that the Write lock request will be repeated shortly during
the period in which Read locks are being declined and that,
during that period, existing Read locks will be completed
and released, allowing the Write lock request to be granted.
It is further supposed that the write operation will complete
shortly and that refused Read locks will be granted on sub-
sequent request.

NASA/TM—2005-213612 3

It should be noted explicitly for the purposes of later dis-
cussion that the lock instance maintains a map of lock con-
texts holding locks on it. This map includes the level of
lock each such context holds.

The lock context interface, GLockCtx, provides the op-
erating context in which the set of locks necessary for a
single, logical transaction is held. Typically, a single lock
context is utilized by a client to hold the locks of that client.
In terms of basic function, the lock context is not particu-
larly complicated.

The lock context handles the mechanics of requesting a
lock on a particular GLock lock instance, implementing
the retry protocol mentioned above when locks are refused.
Thus, when the lock context reports that a lock has been
refused, that lock has already been requested and denied
several times.

Also the lock context provides a programmatically useful
lock-nesting concept. A particular operation may request a
lock nest and obtain multiple locks within it. When the op-
eration is complete, it may rely on the unnesting operation
of the lock context to release those locks to their previous
state. Through a programmatic slight-of-hand, this nest-
ing capability may be used to assure the release of obtained
locks even when exceptions are thrown past the operational
scope in which the locks were obtained.

2.2 Deadlock Detection

When a lock context repeatedly is refused a lock it is re-
questing, it is of interest to determine whether such a re-
fusal represents a deadlock condition (as depicted in Fig-
ure 1.3 on page 2), or whether it is the result of some more
indefinite (and probably irresolvable) condition. This task
falls (in this implementation) to the lock context interface,
though the facilities of the lock interface provide key infor-
mation in this operation, and it is in that lock context that a
deadlock declaration is made.

It is true that, if client A is deadlocked because of client
B, client B is then also deadlocked because of client A;
however, the approach implemented here leaves it to each
client’s lock context to detect that reciprocal truth for itself.
Thus, it may be that if client A detects and resolves the
deadlock with client B, client B may not ever necessarily
identify that the reciprocal deadlock condition existed.

As mentioned previously, the simplest form of deadlock
occurs when client A holds a lock on object 1 and requests
a lock on object 2 while client B holds a lock on object 2

while requesting a lock on object 1. The implemented lock
system refines this basic example to include the concept
of conflicting locks based upon the multiple-reader/single-
writer protocol the system implements. Clearly, if clients A
and B are holding and requesting Read locks, no deadlock
condition exists.

Client A

Client B1

11
12

13

2

Client C

Figure 2.2: Multiple Direct Deadlock Conditions

The next step in widening the deadlock detection process
is to recognize, as depicted in Figure 2.2, that there may
be multiple holders of conflicting locks on the object upon
which a particular client desires a lock. That is, client A
holding locks on objects 1, 11, 12, and 13 and desiring a
lock on object 2 may find that both clients B and C hold
conflicting locks on object 2 and either one of them may
cause a deadlock by requesting a lock on any of the objects
locked by client A. Additionally, it is important to note that
the nature of the conflicts between client A and client B and
between client A and client C need not be the same.

Client A

1

2
Client B

3

Client C

4

Client X

Figure 2.3: A Chain of Deadlock Conditions

NASA/TM—2005-213612 4

While all of this is already an interesting algorithmic exer-
cise, it is still not a sufficient definition of a deadlock con-
dition. As shown in Figure 2.3, deadlock can result from a
chain of locks held and requested. That is, client A holds a
lock on object 1 and requests a lock on object 2 while client
B holds a conflicting lock on object 2 and requests a lock
on object 3. Meanwhile client C holds a conflicting lock on
object 3 and requests a lock on object 4, and so on, until,
at last, some client X holds a conflicting lock on an object
in the chain and requests a lock on object 1, which cannot
be obtained because client A holds the original conflicting
lock on object 1.

In quasi-technical terms, let a directed graph be formed in
which the initial node is the lock context performing the
deadlock analysis and, for each such node of the graph,
the immediate successor nodes are those nodes holding a
conflicting lock on the lock instance of which the subject
node is requesting a lock. A deadlock then exists if that
graph proves to be cyclic at the initial node.

As noted previously, it is to facilitate this computation that
lock instances retain a map of lock contexts holding locks
on the presenting lock instance and record the kind of lock
held by each such lock context. This is exactly the informa-
tion required for the deadlock computation. Further, lock
contexts are sorted by lock level so that the set of lock con-
texts holding conflicting locks with a specified lock level
may be quickly identified.

The resolution of the deadlock condition is not a particu-
lar interest in this paper. Currently, the expectation is that
deadlocks will be resolved by releasing and re-obtaining
all of a client’s locks. The overall project from which this
work is reported has not reached the point at which this is-
sue has been decided and, indeed, it may be that multiple
resolution strategies are possible.

2.3 Set Iteration

The implementation of the deadlock algorithm is, itself,
reasonably straightforward; however, one issue does come
up: the set of lock holders is, itself, not constant with time.
As a particular client makes its way through the calculation,
other clients may either release or obtain locks relevant or
otherwise. A significant element of the implementation is,
thus, not simply implementing the algorithm, but making
that algorithm tolerant of the fact that the problem may be
changing as it is computed. In particular, another client
may already have identified its reciprocal deadlock condi-
tion and be in the act of releasing locks as its resolution
method.

This is, in fact, a particular case of a general problem in
multi-accessor environments: iterations upon a set must
be tolerant of the fact that the set being iterated upon may
change during the course of iteration. Because of this dy-
namicism, direct iteration upon structures such as linked
lists, directed graphs, and the like is inadvisable. A ref-
erence held by a client to the next element of an iteration
may become invalid due to the operation of another client
upon the set. For example in a linked list, should a linked
element regarded as the next element of traversal by one
client be removed from the list by another client, the first
client will have the nasty problem not only of having a next
reference to an element that no longer exists, but also of
having to re-establish its current operating position in that
list.

A solution to this problem is, of course, possible by the
simple expedient of locking up the entire structure on
which the iteration is to occur, perhaps through some pro-
tocol of obtaining a Read lock on a header or controller
element. The difficulty with this solution is exactly what
it does: it locks up the entire structure for the duration of
the iteration. If one assumes that iterative processes will
be inherently fast, that multiple iterators on a given set will
be generally rare, or that such iterations will be generally
disruptive of simultaneous operations anyway, then such a
policy is, perhaps, not a bad choice. On the other hand,
if any or all of the opposites are generally true, then lock-
ing up entire iterative structures for iterative traversals very
quickly leads to one iterator blocking all others for the du-
ration of its operation.

To solve this problem, something called a positional itera-
tor has been devised in the form of the GPosit interface. A
private instance of this interface is obtained for each client
iteration. The GPosit instance is initialized with the identi-
fications of each element of the iterative set, as depicted in
Figure 2.4. This initialization does, indeed, employ the so-
lution above of locking the entire iterative set for the dura-
tion of that initialization; however, it is hoped (if not proven
by practical experience) that the traversal for the purpose of
identification only will be reliably faster than traversal for
the real purpose of iterative operation, whatever that real
computational purpose might be. For the deadlock opera-
tion, this means that the lock instance will (quickly) scan
all of the lock contexts holding a conflicting lock on that
lock instance and load their identifications into the GPosit
iterator supplied by the client’s lock context deadlock al-
gorithm. Because of the internal arrangements made in the
lock interface, this process proceeds with considerable ef-
ficiency.

The next key element of this set iteration scheme is that, as
a final step of iterator initialization, the iterator instance is

NASA/TM—2005-213612 5

List Header

Element 0

Element 1

Element 2

Element 3

GPositIdent El 0

Ident El 1

Ident El 2

Ident El 3

GPositIdent El 0

Ident El 1

Ident El 2

Ident El 3

Figure 2.4: An Initialized GPosit Iterator

List Header

Element 0

Element 4

Element 1

Element 2

Element 5

Element 3

GPositIdent El 0

Ident El 4

Ident El 1

Ident El 2

Ident El 5

Ident El 3

GPositIdent El 0

Ident El 4

Ident El 1

Ident El 2

Ident El 5

Ident El 3

Next

Done

Done

New

Figure 2.5: Effect of Set Additions on an Operating Iterator

NASA/TM—2005-213612 6

made a primative successor of the interface instance con-
trolling additions to and removals from the iterative set. In
the case of the deadlock algorithm, this means that each
GLock instance initializing an iterator makes that itera-
tor a successor of itself and, in this application, also notes
the lock level with which the iterator was concerned. In
other iterative sets, this requirement to be a successor of
a controlling instance does place a restriction upon such
traversable structures: some single instance must be that
controlling, cognizant point. Thus, a linked list cannot be
regarded as a perfectly circular list in which any element
may be momentarily regarded as the head. Instead, one
element must act as the head in all cases so that a central
point of control for iterative operations can be maintained.

Having received an iterator, a client may then obtain el-
ement identifications from that iterator at its leisure, per-
forming such protracted operations as may be its wont.
Provision is made for forward and backward traversals of
the set, the identification of set elements in various ways,
and for definitive detection of the end-of-set condition.

When the actual iterative set changes, it is the responsiblity
of the central point of control to locate each GPosit itera-
tive set successor and notify it of the change. In the case
of the deadlock operation, this means that the granting or
releasing of a conflicting lock results in the notification of
the positional iterator of that change in lock status. (Note
that this notification process is sensitive to the lock level
associated with each iteration and results in actual notifica-
tion of the iterator only when that lock event is of interest
to that deadlock operation.)

By encapsulating the iterative identification operation in a
separate interface instance, a key difference in the treat-
ment of iterative set events is possible. The actual set, the
linked list structure or the map of contexts holding locks,
may be appropriately changed in response to the event, just
as it should be. Meanwhile, the notified GPosit iterator in-
stance makes crucially different adjustments. In the event
of addition to the set as shown in Figure 2.5 (which con-
tinues the example of Figure 2.4 on page 6), not only are
the identifications of new elements added at the appropri-
ate point, but the identification of each new element is also
retained for special consideration at the time of the next it-
erative step by the client. But the most important difference
is upon a removal event as shown in the example continued
by Figure 2.6: the identification of the removed element
is not actually itself removed, but only marked as having
been removed. Thus, at the next iterative step, should that
removed element also be the next element of the iteration,
the position in the set is not lost. It is only necessary for
the iteration to recognize the removed status of the next el-
ement identification and step over it before reporting the

(new) next position to the client.

The treatment of the element addition event by the posi-
tional iterator brings on new possibilities. Generally, set
iteration is considered an ordered process, proceeding for
example forward through a linked list; however, with the
positional iterator it is possible to consider the presense of
newly added set elements at the time of the next iterative
step. If such elements are still further on from the present
position of the iteration (as identification element 5 is in
Figure 2.5 on page 6), then they may be simply left to con-
sideration in their proper order; however, should the itera-
tion already have passed the position of one or more newly
added elements (as is the case for identification element
4 in Figure 2.5), it is possible (optionally) to back the it-
eration up to the point of the earliest such added element.
Since the iterative set interface keeps track of both elements
done and elements removed, such backing up does not re-
peat iterative steps, but merely makes the iteration unpre-
dictably non-monotonic in its nature.

In application to the case of deadlock detection, a newly
granted lock introducing a new, alternate deadlock con-
dition can be detected dynamically as it occurs. Alterna-
tively, should a reciprocal deadlock condition be preemp-
tively cured by the releasing of the locks held by another
client, the release of those locks will also be dynamically
noted and avoid the finding of a deadlock condition that,
in fact, no longer exists. The key point, though, is that
while a particular client context is involved in the poten-
tially lengthy process of deadlock assessment, lock opera-
tions for locks involved in that issue can continue. Thus,
other clients who in fact come into no deadlocked con-
tention with the assessing client may continue lock trans-
actions and perform useful work.

3 Additional Commentary

When the iterative set is internally held, as it is in the case
of the GLock interface, some solution in the manner of
the positional iterator is mandatory to expose that which
is otherwise concealed; however, in the case of exposed
iterative structure, as the linked list used in the examples
above, such a solution is not required. Direct iteration of
such exposed structures is clearly possible. In the case of a
linked list, the simple expedient of maintaining a Read lock
on the current iteration item will assure that some other
accessor does not succeed in removing that item from the
list.

Despite the fact that the positional iterator is not strictly
necessary in the case of exposed structures, the current ex-

NASA/TM—2005-213612 7

List Header

Element 0

Element 4

Element 1

Element 5

Element 3

GPositIdent El 0

Ident El 4

Ident El 1

Ident El 2

Ident El 5

Ident El 3

GPositIdent El 0

Ident El 4

Ident El 1

Ident El 2

Ident El 5

Ident El 3

Next, Removed

Done

Done

Done

Figure 2.6: Effect of a Removal from a Set on an Operating Iterator

pectation is that it will form the basis of the standard it-
erative mechanism in the CORBA-served PIA migration.
The following reasons are put forward in support of this
outlook.

1. The use of the positional iterator interface will bring,
ipso facto, unity to the iterative form. In so doing,
coding will be more predictable and less sensitive to
the structural form supporting the operation. Later
changes in structural form due to software revisions
and the like will have less impact.

2. The introduction of derived positional iterator inter-
face forms provides the opportunity to add further in-
ternal iterative context for those structural forms for
which it is necessary without the necessity of dis-
rupting the basic iterative coding form established by
the positional iterator interface. Such derived forms
might, indeed, provide direct iteration upon a struc-
ture without altering the basic coding form.

3. The ability of the positional iterator to back up to
newly added set elements is a useful feature not avail-
able to direct iterations. Providing an iterative set
event notification to direct iteration code would be an
extremely complicated task.

4 Concluding Remarks

A solution to the problem of distributed lock manage-
ment, deadlock detection, and the iteration on dynamic sets

needed to solve the deadlock detection problem has been
presented. The presented solution is neither perfect nor the
only solution possible; however, the work is presented as
neither of those, but only as a workable solution to a prac-
tical problem. It must be remembered that in any multi-
accessor, asynchronous operating environment, solutions
always represent an engineering tradeoff between flexibil-
ity and perfection.

References

[1] William Henry Jones. Project Integration Architecture:
Application Architecture. Technical memorandum
NASA/TM–2005-213611, National Aeronautics and
Space Administration, Glenn Research Center, 21000
Brookpark Road, Cleveland, OH 44135, March 2005.
Available electronically at http://gltrs.grc.nasa.gov.

NASA/TM—2005-213612 8

This publication is available from the NASA Center for AeroSpace Information, 301–621–0390.

REPORT DOCUMENTATION PAGE

2. REPORT DATE

19. SECURITY CLASSIFICATION
 OF ABSTRACT

18. SECURITY CLASSIFICATION
 OF THIS PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

Form Approved
OMB No. 0704-0188

12b. DISTRIBUTION CODE

8. PERFORMING ORGANIZATION
 REPORT NUMBER

5. FUNDING NUMBERS

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

13. ABSTRACT (Maximum 200 words)

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION
 OF REPORT

16. PRICE CODE

15. NUMBER OF PAGES

20. LIMITATION OF ABSTRACT

Unclassified Unclassified

Technical Memorandum

Unclassified

National Aeronautics and Space Administration
John H. Glenn Research Center at Lewis Field
Cleveland, Ohio 44135–3191

1. AGENCY USE ONLY (Leave blank)

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546–0001

Available electronically at http://gltrs.grc.nasa.gov

March 2005

NASA TM—2005-213612

E–15073

WBS–22–617–91–40

14

Project Integration Architecture: Distributed Lock Management, Deadlock
Detection, and Set Iteration

William Henry Jones

Simulation; Data management; Semantics; Information retrieval; C++ (programming
language); Information systems; Object-oriented programming; Data structures

Unclassified -Unlimited
Subject Category: 63

Responsible person, William Henry Jones, organization code RTS, e-mail: William.H.Jones-1@nasa.gov, 216–433–5862.

The migration of the Project Integration Architecture (PIA) to the distributed object environment of the Common Object
Request Broker Architecture (CORBA) brings with it the nearly unavoidable requirements of multiaccessor, asynchronous
operations. In order to maintain the integrity of data structures in such an environment, it is necessary to provide a locking
mechanism capable of protecting the complex operations typical of the PIA architecture. This paper reports on the
implementation of a locking mechanism to treat that need. Additionally, the ancillary features necessary to make the
distributed lock mechanism work are discussed.

